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ABSTRACT

Ceramic matrix composites offer significant poten-
tial for improving the performance of turbine engines.
In order to achieve their potential, however, improve-
ments in design methodology are needed. In the past
most components using structural ceramic matrix compos-
ites were designed by "trial and error” since the
emphasis on feasibility demonstration minimized the
development of mathematical models. To understand the
key parameters controlling response and the mechanics
of failure, the development of structural failure models
is required. A review of short term failure models with
potential for ceramic matrix composite laminates under
monotonic loads is presented. Phenomenological, semi-
empirical, shear-lag, fracture mechanics, damage
mechanics, and statistical models for the fast fracture
analysis of continuous fiber unidirectional ceramic
matrix composites under monotonic Toads are surveyed.

INTRCDUCTION

Ceramic matrix composites offer significant poten-
tial for improving the thrust-to-weight ratio of gas
turbine engines by enabling higher cycle temperatures
with the use of refractory, high specific strength mate
rial systems. Adding a reinforcing or toughening sec-
ond phase with optimal interfacial bonding improves
fracture toughness and decreases the sensitivity of the
brittle matrix to pre-existing flaws. The reinforcing
second phase can have a variety of shapes, ranging from
nearly spherical particles, through whiskers and
chopped fibers with various length-to-diameter ratios,
to continuous fibers. Aveston et al. (1971) have
shown, however, that the addition of continuous small
diameter fibers reinforce ceramics most efficiently
since their orientation in the direction of the princi-
pal load significantly enhances the matrix cracking
strain, as well as the ultimate load carrying capabil-
ity of the composite.

The primary purpose of this increase in toughness
is to allow for a "graceful” rather than catastrophic
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failure as opposed to an increase in the ultimate
strength, although in high fiber volume fraction compos-
ites, that may also occur. Ceramic matrix composites
retain substantial strength and strain capability beyond
the initiation of first matrix cracking despite the fact
that neither of its constituents would exhibit such
behavior if tested alone. First matrix cracking occurs
at a strain greater than that in the monolithic ceramic
alone. As additional load is applied beyond first
matrix cracking, the matrix will break in a series of
transverse cracks bridged by reinforcing fibers. Addi-
tional load is born by the fibers until the ultimate
strength of the composite is reached. The desired
design stress 1imit, however, should be less than the
matrix cracking stress as cracking allows oxidation of
the fibers, especially at elevated temperatures, which
causes increased fiber-matrix bonding and embrittliement
of the composite.

In the past, most components using structural
ceramic matrix composites were designed by "trial and
error," since the emphasis was on feasibility demonstra-
tion rather than on fully understanding the parameters
controlling behavior. In addition, the continuous
change and deveiopment of these material systems and
the lack of standardized design data minimized the
emphasis on mathematical modeling. To gain insight into
the mechanisms of failure, and to understand the parame-
ters controlling response the development of structural
failure models is required.

The objective of this survey is to investigate
appropriate failure models which may be applicable to
the fast fracture analysis of continuous fiber unidirec-
tional ceramic matrix composite lamina under monotonic
loading, both for first matrix cracking and ultimate
strength. Much of this methodology has been adapted
from existing polymer matrix composites technology.
Phenomenological, semi-empirical, shear-lag, fracture
mechanics, damage mechanics and statistical models are

surveyed. Though semi-empirical models apply to multi-
directional laminates they are included here for com-
pleteness. The emphasis is not on evaluating the models

in detail; more complete surveys are available else-
where. Rather the ability of the models to predict the
fast fracture of ceramic matrix composites is discussed.
Future work will selectively implement these models
and others to be developed into an integrated composite



design code for the reliability analysis of ceramic
matrix composites for use by industry in designing heat
engine components. Because a general purpose code is
desired, failure criteria applicable to unidirectional
lamina are preferred. Laminate failure criteria would
require the characterization of each laminate configura-
tion under consideration. Classical lamination theory
can be used to determine the failure of the laminate
from the failure of the individual lamina. The authors
are aware (Labossiere and Neale, 1987) that variation

of the stacking sequence will affect the strength of a
laminate, while classical lamination theory predicts the
same strength if the layers in a symmetric laminate are
rearranged into another symmetric laminate. This issue
will also be addressed in the future.

PHENOMENOLOGICAL FAILURE CRITERIA

A number of theories exist to predict the failure
of homogeneous isotropic materials under general states
of stress using the material properties obtained from
simple uniaxial tension, compression and shear tests.
Generalizations of these criteria for homogeneous, iso=
tropic materials have been proposed as failure criteria
for fiber reinforced composites that are anisotropic and
inhomogeneous. These phenomenological criteria are the
most familiar to design engineers. Consequently, models
such as maximum stress, maximum strain, Azzi-Tsai (Azzi
and Tsai, 1965), and Tsai-Wu (Tsai and Wu, 1971) are
currently the most frequently used in industry to design
polymer matrix composite components according to a user
survey by Burk (1983) and Soni (1983).

Two excellent reviews of phenomenological failure
criteria are by Nahas (1986) and Labossiere and Neale
(1987). Other surveys of phenomenological anisotropic
failure theories exist (Sandhu, 1972; Bert et al., 1969;
Kaminski and Lantz, 1969; Sendeckyj, 1972; Vicario and
Toland, 1975; Rowlands, 1975; Tsai, 1984; Snell, 1978).
Nahas, in his review, classifies failure criteria into
four categories: direct laminate criteria, limit crite-
ria, interaction criteria and tensor polynomial crite-
ria. In the direct laminate approach the failure
criterion is applied to the entire laminate which is
considered homogeneous but anisotropic. This requires
the strength characterization of each laminate under
consideration; thus, these criteria are not amenable to
a general purpose code as discussed earlier and are not
considered further.

In the ply-by-ply approach, which the other three
categories fall into, the lamina is considered to be
homogeneous and orthotropic. Lamination theory is used
to find the stresses in each lamina and these stresses
are transformed to the lamina principal material axes
before the failure criteria are applied. The direction
of the principal stresses or strains have no signifi-
cance for isotropic materials. However, strength varies
with direction in composites, and generally the direc-
tion of maximum strength does not necessarily coincide
with the direction of principal stress. Thus, the high-
est stress may not be the stress governing the design
and a comparison of the actual stress field with the
allowable stress field is required. The allowable
stress field for a unidirectional composite is given by
the strengths in the principal material direction. They
are the longitudinal tensile strength, longitudinal com-
pressive strength, transverse tensile strength, trans-
verse compressive strength, and in-plane shear strength.

Limit criteria, the first category in the ply-by-
ply approach, assume that failure occurs when the stress
in one of the principal material directions exceeds the
allowable value. The maximum stress criterion and the
maximum strain criterion are examples of limit criteria,
that is

Maximum stress
X' <oy £ X, Yico, <Y, |T]2| <S

Maximum strain
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where o and <t are the stresses, ¢ and y are the
strains, X, Y and S are the longitudinal, transverse
and shear strengths, prime (') denotes compressive
strength, subscripts 1 and 2 denote longitudinal and
transverse directions and U 1is the ultimate strength
or strain.

Stowell and Liu (1961), Kelly and Davies (1965),
and Prager (1969) suggested additional variations of
the maximum stress criterion. Hu (1985), Wasti (1970),
and Lance and Robinson (1971) have proposed generaliza-
tions of Tresca's maximum shear stress criterion for
anisotropic materials.

Hi11 (1948) proposed an interactive criterion by
generalizing the Von Mises Hencky maximum distortional
energy theory to include anisotropy in metals such as
cold rolled steet. It is assumed that the yield condi-
tion is a quadratic function of the stress components,
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where F, G, H, L, M, and N are material coefficients
characteristic of the state of anisotropy, and the sub-
scripts 1 and j refer to the material axes. Linear
terms were not included since 1t was assumed that there
is no Bauschinger effect. Hill showed that the material
coefficients are functions of the material characteris-
tic strengths, and that for plane stress the criterion
reduces to

o \2 o.\2 . \?

1 2 1 1 1 12
L T [ L P 15 e 3)
(X ) <Y ) (XZ Y2 ZZ> 172 ( S )

Azzi and Tsai (1965) suggested that Hill's crite-
rion be modified for composites by assuming that the
material is transversely isotropic and setting Y = Z.

% ? %2 ? 9% T2 ’
©) @ -G
This criterion is also referred to as the Tsai-Hill or
maximum work criterion.

Hoffman (1967) modified Hill's criterion to take
into account the differences between tensile and com-
pressive strengths. Other interactive criteria similar
to Azzi-Tsai have been proposed by Marin (1957),
Franklin (1968), Norris and McKinnon (1946), Yamada and
Sun (1978), Fischer (1967), Chamis (1969), and Griffith
and Baldwin (1962). For various reasons they are not as
widely used or accepted.

In the 1960's, the use of tensor polynomial crite-
ria was motivated by the idea that the failure envelopes
of fiber reinforced materials should be invariant with
respect to the choice of material axes. With that in
mind Gol'denblat and Kopnov (1966) proposed the first

tensor polynomial criterion for anisotropic materials,
that is
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where the F's
orders and
constants.

Tsai and Wu (1971) later proposed a similar crite-
rion, that is

denote strength tensors of various
x, A and u are experimentally determined

f(o) = Fioi + F.
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To ensure that the failure criterion is physically mean-
ingful, or that the failure surface is closed, the
stability criterion, FyiF35 - F%- > 0 (no summation),
must be satisfied. Under plane Stress conditions the
criterion reduces to

2 2
F‘o] + cmz + F6112 + F]1o‘ + Fzzo2 + 2F120102

2
+ F66112 = 1 n

which is the Hill criterion with the addition of linear

terms. The main disadvantage of the Tsai-Wu criterion
is that Fjp 1is determined from difficult biaxial
tests. This theory has not been as widely accepted

because of disagreements over the experimental methods
to determine Fyp. According to Narayanaswami and
Adelman (1977), in the off-axis tests of four different
fiber orientations, it was found that only one value
satisfied the necessary stability criterion.

Wu (1974) claims that most phenomenological crite-
ria are a degenerate case of the Tsai-Wu criterion.
Ashkenazzi (1966), Malmeister (1967), and Huang and
Kirmser (1975) have also proposed tensor polynomial
failure criteria, however, they have only been used in
special cases which reduce them to the Tsai-Wu theory.

SEMI-EMPIRICAL FAILURE CRITERIA

It is natural to attempt to apply linear elastic
fracture mechanics (LEFM) to tension Toaded composites
with crack-1ike defects, however, according to Wu (13968)
LEFM is valid only if:

(1) The orientation of the flaws with respect to
the principal axes of symmetry is fixed.

(2) The stress intensity factor defined for aniso-
tropic cases is consistent with the isotropic case in
stress distribution and in crack displacement modes; and

(3) The critical orientation coincides with one of
the principal directions of elastic symmetry.

In general, however, significant amounts of damage
growth at the crack tip precede fracture in a composite
and self-similar crack growth is not likely to occur,
even for unidirectional laminates.

To appiy principles of LEFM to composites, the
previously proposed fracture theories of Waddoups et al.
(1971), Cruse (1973), Whitney and Nuismer (1974), and
Nuismer and Whitney (1975) did not consider this complex
pattern of crack tip damage. Instead the damage was
modeled as an “intense energy" region that was assumed
to grow in a self-similar manner. HWith these assump-
tions fracture mechanics models developed for isotropic
materials were generalized for composites.

Consider the two fracture models proposed by
Waddoups, Eisenmann, and Kaminski (WEK)(1971), one for
laminates containing circular holes and one for lami-
nates containing straight cracks. For circular holes,
the WEK model assumes that regions of intense energy of

length "a" transverse to the loading direction are deve-
loped at the edge of the hole, as shown in Fig. 1. From
Bowie (1956) and Paris and Sih (1965) they solve for the
opening mode stress intensity factor, Ki

K, = onyfma f(%) (8)

where R is the radius of the hole, a 1is the charag-
teristic length of the intense energy region, and oy

is the remote applied stress. Values of f(a/R) can be
found in Paris and Sih (1965). At fajlure the notched
strength of the composite Taminate, o from Eq. (8) is

K
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where Kyc 1is the composite critical stress intensity
factor or toughness. For an unnotched specimen, that
is for a composite with no hole,
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Combining Egs. (9) and (10), the notched strength of the
composite taminate is

KIc
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The WEK fracture model for straight cracks assumes
that the half-crack length, c, is extended by the damage
zone, a. This results in an effective half-crack length
of (c + a), similar to Irwin's plastic zone correction
factor for isotropic materials. The resulting strength
of the notched composite laminate is

oy = © a a2)

Other similar semi-empirical models have been pro-
posed by Whitney and Nuismer (1974), Nuismer and Whitney
(197%), Karlak (1977), Pipes et al. (1979), Pipes et al.
(1980), Mar and Lin (1977), Poe and Sova (1980), Tan
(1987), and Zhen (1983). A comprehensive review is
given by Awerbuch and Madhukar (1985). Two excellent
discussions of semi-empirical models are given by
Kanninen et al. (1977), and Kanninen and Popelar (1985).

SHEAR-LAG FAILURE CRITERIA

Hedgepeth (1961) was the first to apply shear-lag
models to unidirectional composites. The shear-lag
models assume that the load is transferred from broken
fibers to adjacent fibers by the matrix shear forces
which are assumed to be independent of the fransverse
displacements. This uncouples the longitudinal equilib-
rium equations from those in the transverse direction.

As shown in Fig. 2, Hedgepeth's model consists of
a sheet of parallel filaments which carry axial loads
only in a matrix which carries only shear. Equilibrium
of an element of the nth filament, for the static case,
requires that

dpn(x)
dx

£ 5 00 =5, () =0 (13)

where po(x) is the load in the nth filament and sp(x)
is the matrix shear force per unit length between the

nth and (n + 1N filaments. The force in the nth fila-
ment is
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where EA is the extensional stiffness and wup(x) is

the displacement of the nth filament in the axial direc-
tion. The shear force per unit length can be calculated

from
Gh
s (%) = H—(un+] - un> (15)

where G s the matrix shear modulus, h 1is the effec-
tive thickness of the matrix, and d is the centerline
spacing between the filaments. Equation (15) is the
shear-lag assumption which assumes that the shear force
is a function of the axial displacements only.

Substitution of Eqs. (14) and (15) into Eq. (13
results in

2
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Applyirg the boundary conditions for "n" broken fibers,
Hedgepeth solved for the stress concentration in the
first unbroken fiber as a function of the number of bro-
ken fipers.

Hedgepeth and Van Dyke (1967) extended the analy-
sis to consider three-dimensional fiber arrays and an
elastic-perfectly plastic matrix. Eringen and Kim
(1974) further generalized Hedgepeth's model to include
transverse loads in the matrix. Both of these models,
however, only determined stress concentrations in unbro-
ken fibers. Goree and Gross (1979) investigated the
behavior due to broken fibers and matrix damage in the
form of longitudinal yielding and matrix splitting, as
shown in Fig. 3. A failure criterion for the matrix due
to shear alone was assumed in attempting to predict the
characteristic strength and fracture properties of uni-
directional composite lamina. Further models by Dharani
et al. (1983), and Kaw and Goree (1985) considered other
forms of damage.

FRACTURE MECHANICS FAILURE CRITERIA FOR FIRST MATRIX
CRACKING

According to Aveston, Cooper, and Kelly (ACK)
(1971), if the fibers have a higher failure strain than
the matrix, multiple fracture of the matrix will occur
if

chVf > omuVm + of',-Vf an

where V¢ and Vp are the fiber and matrix volume
fractions, ofy and opy are the ultimate strength of
the fiber and matrix and o is the stress on the
fibers required to produce S strain equal to the fail-
ure strain of the matrix. Most ceramic matrix compos-
ites exhibit such muitiple matrix cracking behavior
where a crack propagates through the matrix and is
bridged by reinforcing fibers. ACK assumed that the
requirements necessary for the formation of such a
matrix crack are that the stress in the matrix must be
equal to the matrix breaking stress, and that the total
energy of the specimen and the loading system must
decrease as a result of crack formation.

The energy changes considered by ACK when a matrix
crack is formed are: AW, the work done by the applied
stress; ygp, the work done in breaking the fiber-matrix
interfacial bond; AUp, the decrease in the matrix strain
energy; AUf, the increase in fiber strain energy; and
Ug. the work done against frictional forces as the fiber
moves relative to the matrix. The condition for the
formation of a crack then is

ZYme * Ygp * US + AUf < AW + AUm 18)

where vyp is the fracture surface work in forming a
matrix crack. The energy terms can be calculated from
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where Ef and Ep are Young's modulus for the fiber
and matrix, epy s the failure strain of the matrix,
tg is the fiber-matrix interfacial shear strength,

Grr s the energy per unit area required to debond the
fiber from the matrix, r is the fiber radius, and

a = EpVp/EfVe.  For a purely frictional bond vygp
equals zero and the critical matrix cracking strain can
be expressed as

1/3
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where E. is Young's modulus of the composite. Aveston
and Kelly (AK) (1975) later extended the analysis to
include an elastically bonded interface and an initiaily
bonded, debonding interface, which are shown in Fig. 4
along with the unbonded, slipping fibers case.

ACK looked at the energy states before and after
¢rack propagation, while Budiansky, Hutchison and Evans
(BHE) (1986) considered the case of steady state crack-
ing which assumes that the stress necessary to propagate
a crack larger than some characteristic dimension is
constant. The assumption of steady-state cracking
implies that the stress at the crack tip remains
unchanged during crack growth and also that the upstream
and downstream stresses, far ahead of and behind the
crack, do not change.

BHE considered a body in three different states
which are shown in Fig. 5. In state (0) the body has
no external applied loads but contains an initial
stress distribution, og. In state (1), with an exter-
nal applied load T, the internal stress distribution
becomes oy and additional strains, e} are produced.
Qbviously, these subscripts do not correspond to the
previously introduced material axes directions. Open
cracks as well as internal surfaces in which sliding
has occurred may exist. In state (2) additional crack-
ing and frictional siiding has occurred with no change
in T. The stresses and strains are oy and e,
respectively. The loss in potential energy in going
from state (1) to state (2) may be written as

i .
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where m; and wp are the potential energies in
states (1) and (2) and &f 1is the frictional energy.



If no slipping occurs, Fig. 4¢a), or if the fibers
are slipping but frictionally constrained, Fig. 4(b),
the potential energy release rate per unit crack exten-
sion per unit thickness is

L
6cf

1 . T
Pu - Pd = EK: J J (cu - od).(eu - cd)dA dz + 3s
-L Ac

(22)

where Py and Py are the upstream and downstream
potential energies per unit cross sectional area of com-
posite crack extension, oy, ey, og, and eq are the
upstream and downstream stress and strain distributions
and Ac is the representative cross section of the com-
posite crack extension. The frictional energy dissipa-
tion rate associated with fiber-matrix slip is 8ef/ds.

BHE assume that the energy release rate, Py - Pyg,
must be balanced by the sum of the frictional energy
dissipation rate and the critical matrix crack extension
energy release rate, VuGp, where Gy is the critical”
matrix energy release rate. Thus,

L
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In the case of initially bonded, debonding fibers a
term for the debonding energy release rate is included
in the materials resistance to crack growth,

L
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where 14 1is the debond length, r is the fiber radius
and Gg is the critical debonding energy release rate.

The upstream stresses are given by the rule-of-
mixtures relationship,

E E
= (E£>o + o; s and 0; = (Em>o + o; 29
C [o

are the initial residual axial

fiber and matrix stresses in the unlocaded composite,
and o is the average applied stress. The downstream
stresses are determined from a shear-lag analysis of &
composite cylinder. Substitution of the upstream and
downstream stresses into Egs. (23) and (24) results in
the matrix cracking condition. For unbonded friction-
ally constrained fibers the matrix cracking stress,
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where r is the fiber radius and p 1is defined in BHE

as a function of constituent properties. The matrix
cracking stress for unbonded slipping fibers is

I 2 1/3
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where <tg 1is the fiber-matrix interfacial shear stress.
Equations (26) and (27) are identical to the AK/ACK
results except for the initial matrix stresses. BHE
also derive a parametric relationship for the results
between the no-slip and large slip cases, and the
matrix cracking stress for the case of initially bonded,
debonding fibers. These cases were not considered by
AK/ACK.

Marshall, Cox, and Evans (MCE) (1985) defined
steady state cracking differently, distinguishing
between large and small cracks, as shown in Fig. 6.
Large cracks asymptotically approach the equilibrium
separation, ug, of the completely failed matrix bridged
by reinforcing fibers. This equilibrium separation
occurs a characteristic dimension, co, from the crack
tip. Beyond this characteristic distance the net force
in the fibers that bridge the crack exactly balances
the applied force and the stress needed to extend the
crack is independent of the crack length. Crack growth
in this region is defined by MCE as steady state growth.
On the other hand, for short c¢racks the entire crack
contributes to the stress concentration, and the stress
required to propagate a crack is sensitive to crack
Tength.

Unlike BHE, MCE consider unbonded, frictionally
constrained fibers only. The matrix cracking stress is
evaluated using a stress intensity approach. The fibers
and matrix are assumed to be cut, as shown in Fig. 7¢(a),
and traction forces, T, are applied to the ends of the
fibers so that they are rejoined. The c¢rack surfaces
are regarded as being subjected to a net opening pres-
sure [0o - p(Xx)] where o, 1is the applied load and
p(x) is the distribution of closure pressure on the
crack surfaces defined as

1/3
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where x represents the position on the crack surface,
as shown in Fig. 7(b). Therefore, MCE introduce the
composite stress intensity factor

)
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for a penny shaped crack, where ¢ s the crack length
and X = x/c. MCE assume that the critical matrix
stress intensity factor is related to the composite
stress intensity factor by

L
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The steady-state matrix cracking stress is obtained by
evaluating Eqs. (29) or (30) and (31) and setting



Ow = ocr. After performing the indicated operations
one obtains

1/3
2
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where v is Poisson's ratio, vy 1is the fiber-matrix
interfacial shear stress, n = EfVe/EpVp, r is the
fiber radius and &' 1is a dimensionless constant. The
results are equivalent to those for the large slip case
of ACK, where &' = 1.83 from an MCE analysis and

§ = 6]73 from an ACK analysis.

In subsequent papers Marshall and Cox (1987) gener-
alized the analysis to include fiber failure in the wake
of the crack, as shown in Fig. 8(a). In their model the
fibers were assumed to have a singled valued strength.
In another model, Thouless and Evans (1988) assumed a
statistical variation in the fiber strength, which is
also shown in Fig. 8(b), and examined the effects of
pull-out when fibers fracture away from the crack plane.

CONTINUUM DAMAGE MECHANICS

Continuum damage mechanics will now be discussed
because it addresses local phenomena as did fracture
mechanics previously and because it can be utilized to
predict the failure of composites, especially time
dependent failure. However, it will only be briefly
described here in general terms and will not be included
in the subsequent discussion.

The basic idea of damage mechanics according to
Sidoroff (1984) is the introduction of a damage variable
describing at the macroscopic level the microscopic deg-
radation occurring in the material. Like fracture
mechanics, continuum damage mechanics considers the
behavior of an imperfect body, however, while fracture
mechanics deals with one dominant macrodefect, continuum
damage mechanics considers a whole population of micro-
defects. In other words, where fracture mechanics
starts with a cracked body, continuum damage mechanics
starts with a perfect material and follows its damage
accumulation to the appearance of a dominant macro-
scopic defect.

In the simplest case a single damage variable D
is assumed to predict failure when D = 1 or some other
critical value D¢ and it is usually defined from some
measurable macroscopic quantity p which is hoped to be
representative of the macroscopic degradation process.
He:ce,

P, - P
D=2 (3
Po = PR

whe"e pgp and pgp denote the values of p in the ini-
tial undamaged state and at rupture. To complete the
model a damage evolution Taw is needed to follow the
damage process. A generalized evolution equation can

be written in the form

(=8
o
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This one-dimensional scalar model, however, will
not be sufficient for composite structures. Many
mechanisms are known to be responsible for composite
damage, i.e., fiber failure, matrix cracking, inter-
facial debonding, etc. and their interaction is not

clearly understood. Averaging them in a single damage
variable cannot be realistic. They are also strongly
related to the anisotropy of composite materials. Con-
sequently, anisotropic damage tensors and other damage
descriptions have been proposed by Wnuk and Kriz (1985),
Talreja (1986), Shen et al. (1987), Lene (1986), and
others.

STATISTICAL FAILURE CRITERIA

Purely statistical criteria have also been pro-
posed for the failure characterization of ceramic
matrix composites when the deterministic models do not
adequately describe observed variation in composite
strength. Because these criteria are purely statistical
they can always be applied, but they do require a
greater amount of test data.

The principle of independent action (PIA)
(Wetherhold, 1983) is the statistical formulation of
the maximum stress criterion. Using Weibull's weakest
link statistic and a state of plane stress for a trans-
versely isotropic material, the reliability due to
intrinsic flaws in a composite can be calculated from

%9 % o, *2 % %6
R = exp - B_ + B—' + 'rg— dv (35)
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where the reliability, R, is the probability of no fail-
ure of the volume, a3 and Rj are the Weibull shape
and scale parameters and o3 are the in-plane material
axes stresses and og has been substituted from the
previously used =t12. The principle of independent
action is a weakest link model which assumes that vol-
ume V is divided into N elements where no failure
of the volume requires no failure of any of the ele-
ments. The event of no failure of an element is the
same as the event of no failure of an element by any of
the stress components which are assumed to act independ-
ently. A statistical equivalent of the maximum strain
failure criterion has also been developed.

Wetherhold's other model (Wetherhold, 1983) is the
probabilistic form of the maximum distortional energy
(MDE) criterion. It also is a weakest link model where
MDE is the criterion for failure of an element. The MDE
criterion is given by

2 2 2

2 °1) 919 <°2) ("5)
K == - + |l + [ (36)
MDE (x] 2 " \% X

The reliability of the element is P{K < 1}. To evalu-
ate the reliability one needs to integrate the following
equation:

X

. J;m Jh<1;X5> r(hxz' 6) FX](X1>FX2<X2)FX5<X6>

. dx] dx2 dx6 37
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where Fy,, FXZ’ and Fy,. are the probability density
functions for strengths Xy, Xy, and Xg and
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The integral in Eq. (37) is intractable and can be eval-
uated only by using a Monte Carlo technique. Other sta-
tistical forms of phenomenological criteria are given by
Cassenti (1984) and Sun and Yamada (1978).

The previous statistical c¢riteria were based on the
observed variation in composite strength. For compos-
ites with high fiber volume fractions and fully cracked
matrices, three models (Jayatilaka, 1979) for the ulti-
mate unidirectional strength have been proposed that
are solely based on the variation in fiber strength of
the ‘composite. These models are based on the following
assumptions:

(1) The crack propagates catastrophically in a
direction normal to the adjacent fibers following the
fracture of a single fiber.

(2) The crack may also propagate along the fiber-
matrix interface and the composite behaves then as a
bundle of unbound fibers.

(3> The last model assumes that when the weakest
fiber fails it is followed by additional fiber fracture
at other weak sites as the load is increased. This is
known as the cumulative damage failure model.

The strength of a single fiber varies with the
lTength of the fiber and this is due to flaws present in

the fiber. The average single fiber strength is given
by

5 = s (14 ) (38)
where o« and f are the fiber Weibull shape and scale
parameters, & s the fiber length and T 1is the gamma
function. The strength of a bundle of fibers in the

second model is similar to the problems considered by
Daniels (1945) where he studied the strength of a bundle

of threads. The average bundle strength of the fibers
is

5, - BOae)/e (39
where e s the base of the natural logarithm, that is

e = 2.7183. These strengths are substituted into the
rule-of-mixtures reltationship to determine the ultimate
strength of the composite assuming zero matrix strength.

The cumulative damage model assumes that when a
fiber fractures, a portion of the fiber of length &
does not carry any load. The composite is divided into
layers of length §. Each layer is considered a bundle
of links and the composite is a series of such bundles,
or a chain-of-bundles. Failure of one bundle results in
total failure of the composite. The average strength
value from the cumulative damage model to be used in the
rule-of-mixtures equation is

- - -1/ea
%y = %mode - Rla Se) (40)

§, the ineffective length, is a function of r,
and the matrix shear modulus.

where
Ve, Ef

Other investigators have proposed models based on
the cumulative damage model. Zweben and Rosen (1970)
considered the chain-of-bundles model in discussing
crack growth in unidirectional composites. The strength
of each bundle was determined by bundle theory taking
into consideration stress concentrations from the shear-
lag model of Hedgepeth in fibers adjacent to broken
fibers. Weakest link theory was used to determine the
probability of failure of the chain-of-bundles. Zweben
and Rosen did not succeed in establishing a usable fail-
ure criterion.

Harlow and Phoenix (1978) also utilized the chain-
of-bundles model. They assumed that the strength of
individual brittle fibers, embedded in a matrix having
stiffness and strength far below that of the fibers,
follows a Weibull distribution. Upon loading isolated
fractures are observed in individual fibers. As the
load is increased fiber fractures accumulate until the
composite can no longer support the load. Two load
sharing rules for the unbroken fibers were considered.
The Equal Load Sharing (ELS) rule assumes that the load
from the broken fibers is evenly distributed amongst
the remaining fibers. The Local Load Sharing (LLS)
rule assumes that the additional load is concentrated
in the fibers adjacent to the broken fibers.

The Batdorf (1982) model, as opposed to the chain-
of-bundles models, considers a composite containing
N fibers of length 2 held together by a matrix.
Damage resulting from loading is assumed to consist of
breaks in the fibers. Single isolated breaks are called
singlets, pairs of breaks are called doublets, or in
general i-plets. The assumption is made that fiber
failure conforms to a Weibull distribution where the
cumulative probability of the fiber breaking is given by

Pela) = 1 - exp[-Q(%)a} an

where « and R are the Weibull parameters. If there
are N fibers of length 1, the number of singlets at
stress o is

R (42)

A singlet becomes a doublet when one of the neighboring
fibers breaks. The probability that a singlet becomes a

doublet, Pys2, is
¢o &
P]"Z = n])\ —B—' (43)

where ny 1is the number of fibers subjected to a stress
concentration that varies from cjo to o relative to
the nominal fiber stress and A} s the effective
length of this overstressed region. The number of doub-
lets in loading to stress o thus becomes

Q
¢yo
Q- anlxl<_§—) (a4)
Generalizing this result gives
¢;o\*
Qi1 = MMl (45

Failure occurs when an i-plet becomes unstable and imme-
diately becomes an (i + 1) plet, which immediately



becomes an (i + 2) plet, etc., resulting in fracture of
the composite.

SUMMARY AND DISCUSSION

There are two general approaches to predicting
failure. One is the phenomenological approach and the
other is mechanistic. The phenomenological approach is
strictly an empirical curve fitting procedure that
develops a surface in stress space to fit the available
data. MWith enough constants the experimental data can
always be adequately described. The phenomenological
approach has been applied to homogeneous, isotropic
materials such as metals with considerable success. If
the strength of the metal, however, is sensitive to
microstructural discontinuities, such as cracks, a mech-
anistic approach such as fracture mechanics is required.
The mechanistic approach develops criteria that describe
the mechanisms of failure in terms of microstructural
variables and the use of engineering principles.

The complex mechanisms of failure in ceramic matrix
composites such as matrix cracking, interfacial debond-
ing and fiber pull-out (Harris, 1986) are strongly
affected by microstructural parameters such as fiber
diameter or fiber-matrix interfacial shear strength.

The macroscopic phenomenclogical criteria cannot account
for these factors in predicting failure. In addition,
mechanistic criteria can extrapolate beyond known test
conditions to account for variations in these parame-
ters. Thus, mechanistic criteria are necessary to
understand the factors controlling the failure of
ceramic matrix composites. On the other hand, they may
become intractable when too many parameters control the
materials failure behavior.

The semi-empirical failure criteria attempt to
apply the mechanistic principles of linear elastic frac-
ture mechanics to composites by assuming the existence
of an "intense energy" region at the crack tip. In
practice, however, because of unknown crack dimensions
they are two-parameter empirical correlations of test
data much the same as the phenomenological criteria.
These models were developed for polymer matrix compos-
ites where the assumption of an "intense energy" region
may be acceptable, but is questionable for ceramic
matrix composites. To apply these criteria certain
characteristic parameters must be determined experimen-
tally. These parameters are dependent upon the laminate
configuration and material system. Like the phenomeno-
logical models, the semi-empirical criteria do not
describe the mechanisms of failure.

The shear-lag failure criteria are mechanistic
models that describe the behavior of the composite at
the micromechanics level. The first models did not con-
sider failure in a composite but simply the stress con-
centration due to broken fibers in adjacent unbroken
fibers. Goree and Gross were the first to consider
failure. The model included longitudinal yielding of
the matrix and matrix splitting, two failure mechanisms
seen in polymer matrix composites. Shear-lag models
are not currently applicable to ceramic matrix compos-
ites. They assume that the tensile load is carried
solely by the fibers, while actually, a ceramic matrix
has significant load carrying capability.

The fracture mechanics failure criteria are also
mechanistic models. The ACK model, based on energy
principles, was originally developed for concrete and
steel reinforcing wires, but is also applicable to
ceramic matrix composites. The multiple matrix frac-
ture and enhanced matrix cracking strain predicted by
ACK is seen in many brittle matrix composites. The
more rigorous energy analysis of BHE was developed spe-
cifically for brittle matrix composites for the cases

of frictionally constrained and initially bonded,
debonding matrices. The model of primary interest, how-
ever, is that of MCE. It considers frictionally con-
strained, slipping fibers which result in the desired
"graceful" failure of the ceramic matrix composite.

MCE also consider the transition from notch insensitive
targe crack behavior to notch sensitive short crack
response. Failure due to transverse or compressive
loads has not been addressed here. Fracture mechanics
models are suitable only for tension loaded ceramic
matrix composites. In addition, fracture mechanics
models are based on the assumption of a constant inter-
facial shear strength. The validity of that assumption
is being addressed by others.

The criteria discussed so far have all been deter-
ministic. Some phenomenological and mechanistic models
can also be expressed in statistical form. There is a
great deal of intrinsic variability in the strength of
each of the brittle constituents of a ceramic matrix
composite but, depending on the composite system, the
matrix cracking strength may be deterministic or proba-
bilistic. The ultimate unidirectional composite
strength, however, will always be probabilistic since
its value is determined by the brittle fiber strength
distribution. Thus, statistical models are required
for those composite systems which possess a great deal
of strength scatter or have linear stress-strain curves
all the way to fracture.

The criteria of Wetherhold, Cassenti, and Sun and
Yamada are purely statistical and are based on the dis-
tribution of composite strength data. Phenomenological
models are used as criteria to predict probability of
failure of the composite. The three models, described
by Jayatilaka, for the ultimate unidirectional strength
of a composite are also purely statistical, but are
based on the variation in strength of only the composite
fiber. In high fiber volume fraction composites, the
most conservative and accurate ultimate, longitudinal
strength is a function of the bundle strength, provided
that the fiber volume fraction and fiber strength are
adequate to carry the load after matrix failure. The
other two models are less conservative and more applica-
ble to the behavior of polymer matrix composites.

A better approach would be to develop statistical
fajlure criteria based on mechanistic models, as done
for monolithic ceramics. These criteria could then be
used to extrapolate beyond the range of observations,
not on the basis that the distributions they produce
can be fitted to existing test data, but that they are
germane to the phenomena. These ¢riteria currently do
not exist. The most promising model to describe the
variability in strength and the mechanisms of failure
in ceramic matrix composites would be a statistical
failure criteria based on the fracture mechanics models
of ACK, BHE and more specifically of MCE.

Fracture mechanics and statistical models, and com-
binations of these as required by the selected material
system, will be incorporated in the near future into an
integrated composite design program for component
analysis.
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Figure 1. - Semi-empirical model for circular hole showing assumed
intense energy region.
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Figure 2. — Forces and displacements in filaments in Hedgepeth's
shear-lag model.
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Figure 7. - Expected crack geometry before and after application of
fiber forces to evaluate closure pressure in stress intensity
analysis.
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(a) Single valued fiber strength.

(b) Statistical variation in fiber strength.

Figure 8. - Crack configurations analyzed assuming
fiber breaks in the wake of the crack tip.
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